

Para la industria de plásticos Termopar para bloques de distribución Modelo TC47-MT

Aplicaciones

- Industria del plástico y del caucho
- Distribuidor de canal caliente para máquinas de moldeo por inyección
- Placas de impresión
- Embalaje

Características

- El sensor se fija con una longitud determinada y se incorpora al proceso
- El termopar para bloques de distribución tiene una altura media a baja
- La conducción térmica está disponible con numerosos materiales de aislamiento por ejemplo filamento de vidrio, PTFE y PVC
- Con o sin tejido de acero inoxidable o tubo flexible ondulado de metal
- Intercambiable y fácil de reemplazar

Termopar para bloques de distribución, modelo TC47-MT

Descripción

El termopar para bloques de distribución TC47-MT es una sonda de temperatura universal para aplicaciones de alturas medias y bajas. El termopar es óptimo para aplicaciones en las cuales la punta metálica del sensor debe adaptarse directamente a un taladro.

El termopar para distribuidor se fija mediante un tornillo o un perno roscado. De esa manera se garantiza una presión uniforme de la punta de medición en el taladro, cuando el termopar está correctamente instalado. Debido a su diseño, estas sondas de temperatura son ideales para lugares de difícil acceso también en condiciones adversas.

Sensor

Modelo de sensor

- Tipo J (Fe-CuNi)
- Tipo L (Fe-CuNi)
- Tipo K (NiCr-Ni)
- Modelo T (Cu-CuNi)
- Otros a consultar

Número de sensores

- 2 hilos termopar individual
- 4 hilos termopar doble

Tolerancias

■ Clasificación europea 1 y 2 según DIN EN 60584-2 DIN 43714 y DIN 43713: 1991 DIN internacional (IEC) 43722: 1994 JISC 1610: 1981 NFC 4232

BS 1843

Clasificación norteamericana 1 y 2 Normas especiales ISA según ANSI MC 96.1 - 1982

Punto de medición

- Aislado (no conectado a tierra)
- No aislado (conectado a tierra)

Construcción de la sonda: estructura tubular

Las sondas de temperatura tienen una estructura tubular. Ésta consiste en una vaina tubular en la cual se introduce y se fija el conductor térmico. Debido a esta estructura, las sondas de temperatura pueden utilizarse en lugares de fácil acceso.

Opciones

- Longitudes y diámetros específicos para el cliente
- Clasificaciones de calibración personalizadas
- Identificación (número de identificación específico para el cliente)
- Tolerancia de precisión seleccionable
- Opciones de instalación especificadas por el cliente

Valores básicos y desviaciones límite

En la definición de la desviación límite del termopar se toma como base la comparación de la punta fría a 0 °C.

Temperatura (ITS 90) °C	Desviación límite DIN Tipo J °C	EN 60584 Tipo K °C
0	± 2,5	± 2,5
200	± 2,5	± 2,5
400	± 3,0	± 3,0
600	± 4,5	± 4,5
800	no definida	± 6,0

Tipos J, L DIN EN 60584, ANSI MC 96.1

Clase	Rango de temperatura	Desviación límite
1	-40 +375 °C	± 1,5 °C
1	+375 +750 °C	± 0,0040 · t 1)
2	-40 +333 °C	± 2,5 °C
2	+333 +750 °C	± 0,0075 · t 1)

Tipo K DIN EN 60584, ANSI MC 96.1

Clase	Rango de temperatura	Desviación límite
1	-40 +375 °C	± 1,5 °C
1	+375 +750 °C	± 0,0040 · t 1)
2	-40 +333 °C	± 2,5 °C
2	+333 +750 °C	± 0,0075 · t 1)

Tipo T DIN EN 60584, ANSI MC 96.1

Clase	Rango de temperatura	Desviación límite
1	-40 +125 °C	± 0,5 °C
1	+125 +350 °C	± 0,0040 · t 1)
2	-40 +133 °C	± 1,0 °C
2	+133 +350 °C	± 0,0075 · t 1)

1) I t I es el valor numérico de la temperatura en °C sin considerar el signo.

Ejecución de la punta del sensor

La versión estándar está dotada de un sensor adecuado para el rango de medición seleccionado.

El modelo TC47-MT está disponible en dos variantes distintas:

No conectado a tierra Conectado a tierra Punto de medición aislado Punto de medición no aislado Termopar Termopar Punto de Punto de medición medición Mantel Mantel

Material de la vaina

- Acero inoxidable
 - hasta 1200 °C
 - buena resistencia a la corrosión en medios agresivos
- Aleación de níquel 2.4816 (Inconel 600)
 - Material estándar para todas las aplicaciones que requieren una elevada resistencia a la corrosión con temperaturas al mismo tiempo elevadas; resistente a la corrosión de fisura inducida por esfuerzos
- Otros a consultar

Cable de conexión

Muchos materiales de aislamiento están disponibles para las diferentes condiciones de proceso.

Los extremos del cable de conexión pueden entregarse preparados para la conexión ó opcionalmente equiparse con una clavija.

- Termopar, apto para la conexión a proceso
- Sección de los conductores: mín. 0,22 mm² (24 awg)
- Material aislante: filamento de vidrio, kapton, PTFE o PVC
- Otras opciones disponibles

Temperaturas admisibles

Los límites de temperatura siguientes son válidos para los cables de conexión convencionales.

Filamento de vidrio -50 ... +482 °C
 Kapton -25 ... +260 °C
 PTFE -50 ... +260 °C
 PVC -20 ... +105 °C

Kapton / Kapton

500 °F (260 °C) Envoltura de poliamida para mejorar las propiedades eléctricas y las aplicaciones con temperaturas altas.

500 °F (260 °C)
Envoltura de
poliamida para una
resistencia óptima
a la abrasión y
rotura y resistencia muy alta
a humedad y sustancias
químicas.

1-

PVC / PVC

221 °F (105 °C) El aislamiento de PVC garantiza rentabilidad, durabilidad y resistencia mecánica

221 °F (105 °C) La envoltura de PVC garantiza rentabilidad, durabilidad y resistencia

mecánica. Al mismo tiempo es muy dura y resistente a calor, abrasión y humedad.

Filamento de vidrio / filamento de vidrio

900 °F (482 °C) Aislamiento de fibra de vidrio envuelto para mejor resistencia a humedad y abrasión con temperaturas altas.

900 °F (482 °C)
Trenzado de fibra
de vidrio para
mejor flexibilidad
y resistencia a abrasión con
temperaturas altas.

PTFE / PTFE

500 °F (260 °C) Aislamiento de PFA para mejorar las propiedades eléctricas y las aplicaciones con temperaturas altas.

500 °F (260 °C) Envoltura PFA para inercia química frente a soluciones, ácidos y aceites.

Conexiones

El termopar se fija con un tornillo.

Protección del conductor

■ Tejido de acero inoxidable (sin fibra de identificación)
El tejido de acero inoxidable es el que se emplea con
mayor frecuencia; está disponible para casi todo tipo
de prolongaciones de termopares y construcciones de
alambre doble. El acero inoxidable es extremadamente
resistente a la corrosión y soporta una temperatura
constante de servicio de 760 °C (1400 °F).

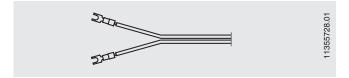
■ Tejido de acero inoxidable (con fibra de identificación)
Tejido de acero inoxidable con una fibra identificada por
colores, acorde a la respectiva norma sobre termopares,
con una cobertura mínima de tejido del 85 %.

■ Tejido de cobre estañado

Aún cuando algunas características sean similares a las del acero inoxidable, ésta es una alternativa más económica. Este producto ofrece un blindaje perfeccionado contra el ruido estático (cuando está correctamente aislado y puesto a tierra), con una temperatura continua de servicio de 204 °C (400 °F).

■ Tubo metálico flexible ondulado de acero inoxidable
Se trata de un cable blindado semi-oval colocado
en forma de espiral. Los cables blindados de acero
inoxidable poseen similares características que los tejidos
y son adicionalmente resistentes a aplastamientos y
perforaciones. Pueden utilizarse a temperaturas altas:
760 °C (1400 °F). La protección consiste en un blindaje
no magnético, resistente a la corrosión y a la perforación,
también en aplicaciones en la intemperie.

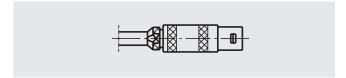
Clavija (opción)

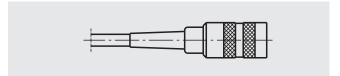

Los termopares TC47-MT pueden suministrarse con clavijas ya montadas.

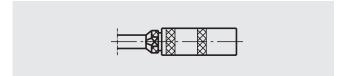
La temperatura máx. admisible en los conectores es de 85 °C.

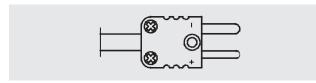
Hay las opciones siguientes:

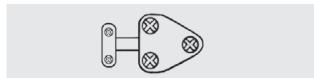
■ Terminales de cable

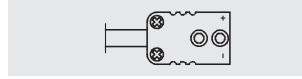

(no aptos para la versión con hilos de conexión desnudos)

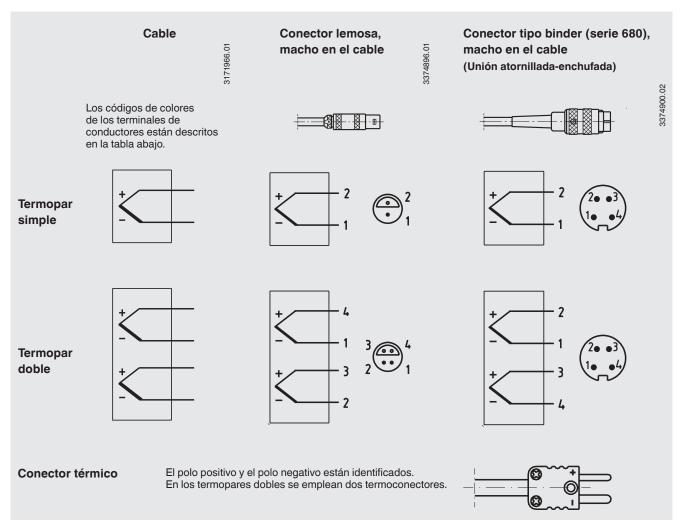

■ Conector atornillable y enchufable, Binder (macho)


- Conector Lemosa, tamaño 1 S (macho)
- Conector Lemosa, tamaño 2 S (macho)

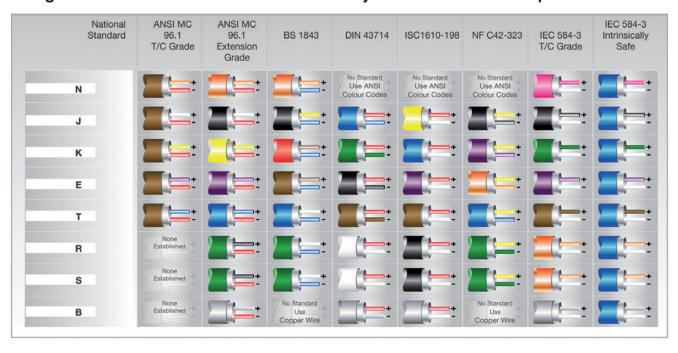

■ Conector atornillable y enchufable, Binder (hembra)


- Conector Lemosa, tamaño 1 S (hembra)
- Conector Lemosa, tamaño 2 S (hembra)


- Conector térmico estándar de 2 pines (macho)
- Miniconector térmico de 2 pines (macho)


- Sujetacables estándar (opción con conector térmico)
- Sujetacables miniatura (opción con conector térmico)

- Conector térmico estándar de 2 pines (hembra)
- Miniconector térmico de 2 pines (hembra)



Conexión eléctrica

Otros conectores, así como otras asignaciones Pin sobre consulta.

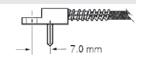
Código de colores de los cables de extensión y de los cables de compensación

Tolerancias del termopar (comparación de la punta fría a 0 °C)

Desviaciones límite IEC según EN 60584-2					
Termopar modelo		Clase de precisión 1	Clase de precisión 2	Clase de precisión 3	
т	Rango de temperatura	-40 +125 °C	-40 +133 °C	-67 +40 °C	
	Desviación límite	±0,5 °C	±1,0 °C	±1,0 °C	
	Rango de temperatura	+125 +350 °C	+133 +350 °C	-20067 °C	
	Desviación límite	±0,004 ltl	±0,0075 ltl	±0,015 t	
	Rango de temperatura	-40 +375 °C	-40 +333 °C	-	
J	Desviación límite	±1,5 °C	±2,5 °C	-	
J	Rango de temperatura	+375 +750 °C	+333 +750 °C	-	
	Desviación límite	±0,004 ltl	±0,0075 t	-	
E	Rango de temperatura	-40 +375 °C	-40 +333 °C	-167 +40 °C	
	Desviación límite	±1,5 °C	±2,5 °C	±2,5 °C	
_	Rango de temperatura	+375 +800 °C	+333 +900 °C	-200167 °C	
	Desviación límite	±0,004 ltl	±0,0075 t	±0,015 t	
	Rango de temperatura	-40 +375 °C	+40 +333 °C	-167 +40 °C	
KoN	Desviación límite	±1,5 °C	±2,5 °C	±2,5 °C	
KON	Rango de temperatura	+375 +1000 °C	+333 +1200 °C	-200167 °C	
	Desviación límite	±0,004 ltl	±0,0075 ltl	±0,015 t	
RoS	Rango de temperatura	0 +1100 °C	0 +600 ºC	-	
	Desviación límite	±1,0 °C	±1,5 °C	-	
	Rango de temperatura	+1100 +1600 °C	+600 +1600 °C	-	
	Desviación límite	±[1 + 0,003 (t-1100)]	±0,0025 ltl	-	
В	Rango de temperatura	-	-	+600 +800 °C	
	Desviación límite	-	-	+4,0 °C	
J	Rango de temperatura	-	+600 +1700 °C	+800 +1700 °C	
	Desviación límite	-	±0,0025 t	+0,005 t	

Diferencias límite ASTM (ASTM E230)					
Termopar modelo		Límites estándares (el valor más grande es válido)		Límites especiales (el valor más grande es válido)	
_	Rango de temperatura	0 +370 °C	+32 +700 °F	0 +370 °C	+32 +700 °F
	Desviación límite	±1 °C ó ±0,75 %	±1,8 °F ó ±0,75 %	±0,5 °C ó 0,4 %	±0,9 °F ó 0,4 %
•	Rango de temperatura	-200 0 °C	-328 +32 °F	-	-
	Desviación límite	±1,0 °C ó ±1,5 %	±1,8 °F or ±1,5 %	-	-
J	Rango de temperatura	0 +760 °C	+32 +1400 °F	0 +760 °C	+32 +1400 °F
	Desviación límite	±2,2 °C ó ±0,75 %	±4,0 °F ó ±0,75 %	±1,1 °C ó 0,4 %	±2,0 °F ó 0,4 %
	Rango de temperatura	0 +870 °C	+32 +1600 °F	0 +870 °C	+32 +1600 °F
E	Desviación límite	±1,7 °C ó ±0,5 %	±3,1 °F ó ±0,5 %	±1,0 °C ó ±0,4 %	±1,8 °F ó ±0,4 %
_	Rango de temperatura	-200 0 °C	-328 +32 °F	-	-
	Desviación límite	±1,7 °C ó ±1,0 %	±3,1 °F ó ±1,0 %	-	-
	Rango de temperatura	0 +1260 °C	+32 +2300 °F	0 +1260 °C	+32 +2300 °F
К	Desviación límite	±2,2 °C ó ±0,75 %	±4,0 °F ó ±0,75 %	±1,1 °C ó ±0,4 %	±2,0 °F ó ±0,4 %
N.	Rango de temperatura	-200 0 °C	-328 +32 °F	-	-
	Desviación límite	±2,2 °C ó ±2,0 %	±4,0 °F ó ±2,0 %	-	-
N	Rango de temperatura	0 +1260 °C	+32 +2300 °F	0 +1260 °C	+32 +2300 °F
	Desviación límite	±2,2 °C ó ±0,75 %	±4,0 °F ó ±0,75 %	±1,1 °C ó ±0,4 %	±2,0 °F ó ±0,4 %
RoS	Rango de temperatura	0 +1480 °C	+32 +2700 °F	0 +1480 °C	+32 +2700 °F
	Desviación límite	±1,5 °C ó ±0,25 %	±2,7 °F ó ±0,25 %	±0,6 °C ó ±0,1 %	±1,1 °F ó ±0,1 %
В	Rango de temperatura	+870 +1700 °C	+1600 +3100 °F	+870 +1700 °C	+1600 +3100 °F
	Desviación límite	±0,5 %	±0,5 %	±0,25 %	±0,25 %

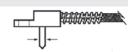
Indicaciones relativas al pedido


El termopar para bloques de distribución se utiliza en distribuidores de canal caliente y placas. La punta del termopar se introduce en un taladro. El termopar mide la temperatura del fondo del taladro y se sujeta con un tornillo. Esta sonda tiene una forma media a baja.

Seleccione un artículo de cada categoría para su pedido

Bloque de distribución

- Acero inoxidable
- Otros a consultar



Punto de medición

- Conectado a tierra (no aislado)
- No conectado a tierra (aislado)

Diámetro de la punta (Ø)

- 4 mm
- Otros a consultar

Longitud de la punta

- 12 mm
- 20 mm
- 25 mm
- Otros a consultar

Longitud del cable

- 500 mm
- 1000 mm
- 1500 mm ■ 2000 mm
- 2500 mm
- Otros a consultar

Cable de conexión

- Filamento de vidrio / filamento de vidrio
- PTFE/PTFE
- PVC / PVC
- Kapton / Kapton
- Otros a consultar

Protección del conductor

- Ninguna
- Tejido de acero inoxidable (sin fibra de identificación)
- Tejido de acero inoxidable (con fibra de identificación)
- Teiido de cobre estañado
- Tubo metálico flexible ondulado

Conexión eléctrica

- Extremos de cable pelados
 - Conector térmico estándar de 2 pines (macho)
- Miniconector térmico de 2 pines (macho)

- Conector estándar con sujetacables (macho)
- Conector miniatura con sujetacables (macho)

- Conector Lemosa, tamaño 1 S (macho)
- Conector Lemosa, tamaño 2 S (macho)

- Conector atornillable y enchufable, Binder
- Otros a consultar

Modelo de termopar

- ANSI MC96.1 rojo ⊖ blanco ⊕ Κ ANSI MC96.1 rojo ⊖ amarillo @ Т ANSI MC96.1 rojo ⊖ azul ⊕
- IEC 584-3 blanco ⊖
- negro ⊕ K IEC 584-3 blanco ⊖ verde ⊕ Т IEC 584-3 blanco ⊖ marrón
- DIN 43714 azul ⊖ rojo ⊕ DIN 43714 K verde ⊖ rojo ⊕
- DIN 43714 Т marrón ⊖ rojo ⊕
- Otros a consultar

© 2011 WIKA Alexander Wiegand SE & Co. KG, todos los derechos reservados. Los datos técnicos descritos en este documento corresponden al estado actual de la técnica en el momento de la publicación. Nos reservamos el derecho a modificar y sustituir materiales.

Hoja técnica WIKA TE 67.21 · 04/2011

Página 7 de 7

Instrumentos WIKA, S.A. C/Josep Carner, 11-17 08205 Sabadell (Barcelona)

(+34) 933 938 630 Tel. Fax (+34) 933 938 666 E-mail info@wika.es www.wika.es