DIGITAL PROGRAMMABLE BARGRAPHS
 analog display 64 segments on 92 mm digital display 3 eight milimeter digits

 Automatic Systems
 T. 962448450 www.disai.net

The DIP-BAR 1 and DIP-BAR 2 series indicators allow measure visualising on 2 types of display simultaneously :

- Analog : programmable bargraph (92 mm column consisting of 64 red segments), display of alarm setpoints, oversteppings and sensor rupture, location of 0 programmable ...
- Digital (3 eight millimeter high red digits)

DIP-BAR 1: 1 programmable measure channel DIP-BAR 2 : 2 programmable measure channels (not insulated from each other)

Universal programmable inputs:

Process inputs (DC bidirectionnal current or voltage).
Temperature inputs (thermocouple or sensor).
Potentiometer or resistance inputs.

COMBINABLE OPTIONS :

(to be specified on order).

Insulated analog outputs :

(not insulated from each other)
Output active or passive current, or voltage.
Programmable scale ratio with enlarging effect.
Return value in case of sensor rupture and/or self-diagnosis error.
The two analog outputs are programmable either in current or voltage.

Relay output :

2 or 4 relays : mode setpoint or mode window.
Recording of alarms.
Time delay and hysteresis adjustable on each setpoint.
Alarm messages.
Each analog or relay output can be dedicated to one or the other of the 2 channels.

External view

The series DIP-BAR 1 and DIP-BAR 2 offer a broad range of high accuracy programmable indicators.
The frontal display enables fast and simple visualising of the measure state. They allow display, control and transmission of data from any measurable magnitudes.

Programming

- 2-key keyboard accessible on front face.

Bargraph measure :

- Measure and value to be entered : (3 digits) -199 to 999.
- The bargraph up, down and zero are programmable in display value.

Display :

- Of the zero location, (column inverted around the zero).
- Of oversteppings on the bargraph (10\%), (shown by a flashing column).
- Of the position of alarm setpoints, (shown by a segment of the column)
- Of alarm set off, (shown by a flashing segment).
- The brightness of bargraph and digits is programmable separately.

Dimensions

DIP-BAR 1 DIP-BAR 2
1 channel 2 channels

external case dimensions

Case : $144 \times 36 \times 145 \mathrm{~mm}$ (with terminals)
Mounting : on panel;
cut out $33 \times 138 \mathrm{~mm}$
Tightening by screwed straps

TYPES OF OUTPUT OPTIONS

2 analog outputs, programmable in voltage or in current

Active current output $0 / 4-20 \mathrm{~mA}$
Passive current output $0 / 4-20 \mathrm{~mA}(\mathrm{Vmax} .=30 \mathrm{Vdc})$
Voltage output 0-10V

- Accuracy 0.1% in relation to display (at $+25^{\circ} \mathrm{C}$).
- Residual ripple $\leq 0.2 \%$.
- Admissible load $0 \Omega<\mathrm{Lr}<500 \Omega$ (current) Rc $>2 \mathrm{k} \Omega$ (voltage)
- Programmable scale ratio with enlarging effect.
- Response time : 40 ms . (to be added to the measure response time).

Relay output : 2 types on choice
R4: 4 independently programmable setpoint relays

- Hysteresis independently programmable from 0 to 100% of setpoint in the display unit.
- Time delay independently programmable from 0 to 25 s . in 0.1s.increases
- NO-NC contact 8 A - 250 V on resistive load.

INPUT TYPES : (1 OR 2 CHANNELS)

DC current or voltage

Bidirectionnal $\pm 100 \mathrm{mV}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 300 \mathrm{~V}, \pm 20 \mathrm{~mA}$.
Potentiometer and resistance \quad Current or voltage

Potentiometer and resistance

Resistive sensors : calibers $0-400 \Omega$ and $0-2 \mathrm{k} \Omega$ ($0-8 \mathrm{k} \Omega$ option).

- Accuracy : 0.1% for calibers $0-400 \Omega$ and $0-8 \mathrm{k} \Omega$ and 0.5% for caliber $0-2 \mathrm{k} \Omega$ (of full scale at $+25^{\circ} \mathrm{C}$).
- Thermic drift < 150ppm/ ${ }^{\circ} \mathrm{C}$.

Potentiometers : from 100Ω to $10 \mathrm{k} \Omega$.

- Accuracy : 0.1% of full scale at $+25^{\circ} \mathrm{C}$.
- Thermic drift $<150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
- Accuracy 0.05% of full scale at $+25^{\circ} \mathrm{C}$.
- Thermic drift < 150 ppm $/{ }^{\circ} \mathrm{C}$.
- Measurable scale overstepping from -5% to $+5 \%$.
- Programmable scale factor.
- Enlarging effect - Square root extraction.
- Special linearisation : 20 points.
- Supply for 2 or 3 wire sensor
$26 \operatorname{VDC}(\pm 15 \%)-25 \mathrm{~mA}$ protected from short-circuits.
\qquad

Temperature

Type L min. $-150^{\circ} \mathrm{C} \quad \max .+910{ }^{\circ} \mathrm{C}$

- Accuracy : 0.1% of full scale at $+25^{\circ} \mathrm{C}$, or $25 \mu \mathrm{~V}$ typical $(50 \mu \mathrm{~V}$ max.).
- Thermic drift $<150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (except CJC)

CJC efficiency: $<0,03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ from $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Sensors :

Pt $100 \Omega \min -199{ }^{\circ} \mathrm{C} \quad \max .+850{ }^{\circ} \mathrm{C}$
Ni $100 \Omega \min -60^{\circ} \mathrm{C} \quad \max .+260{ }^{\circ} \mathrm{C}$

- Line resistance influence in 3 wire measurement included in the class for $0<\mathrm{RI}<25 \Omega$.
- Measuring of $\Delta \mathrm{Pt} 1002$ wire from $-199^{\circ} \mathrm{C}$ to $+270^{\circ} \mathrm{C}$
($0<\mathrm{RI}<10 \Omega$)
(Resistance max. 400) .
- Max. measure current : $250 \mu \mathrm{~A}$.
- Accuracy : 0.1% of full scale at $+25^{\circ} \mathrm{C}$.
- Thermic drift < $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Envi ronment

- Operating temperature : -5 to $55^{\circ} \mathrm{C}$.
- Storage temperature : $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
- Relative dampness : 80\% annual average.
- Case : Moulded plastic casing, grey body, black front
face (for panel mounting).
Front dimensions : $36 \times 144 \mathrm{~mm}$
Weight with / without output board: $420 \mathrm{~g} / 290 \mathrm{~g}$.
- Connectors plug-off connectors on rear face for screwed connections ($2,5 \mathrm{~mm}^{2}$, flexible or rigid).
- Protection : Front face: IP 50 Case/terminals : IP20
- Standards : Complies with standards EN 50081-2 on emissions and EN 50082-2; on immunity (in industrial environment)
EN 61000-4-2 level 3, EN 61000-4-3 level 3,
EN 61000-4-4 level 4, EN 61000-4-6 level 3
(€ marking according to Directive CEM 89-336.

Auxiliary power supply

2 Versions: High Voltage or Low Voltage
(to be specified on order)

| High Voltage : | $90 \ldots 270 \mathrm{VAC}$
 and | $88 \ldots 350 \mathrm{VDC}$ |
| :---: | :--- | :--- |$\quad 50 / 60 / 400 \mathrm{~Hz}$

Power draw : 6 W max. 10 VA max.

Features

- Sampling time : 100 ms per measure channel
- Input impedance $\geq 1 \mathrm{M} \Omega$ for voltage inputs Drop 0,9 V max. for the current input
- Rejection rate : Common mode : $130 \mathrm{~dB} \quad$ Mode series : $70 \mathrm{~dB} 50 / 60 \mathrm{~Hz}$
- Zero drift compensation and self-calibration
- Insulation : Input / Power supply : $2,5 \mathrm{kV}$ eff. $50 \mathrm{~Hz}-1$ min Input / Output : 2.5 kV eff. 50Hz-1min

- Programmable integration indice

Allows display stabilizing in case of unsteady input.

- Line or sensor rupture detection

- Can be detected on inputs mV, CT, Pt 100, Ni 100 , $\Delta \mathrm{Pt} 100$, resistance and current (4-20 mA).
- Return value programmable on the analog output in case of sensor rupture.
- State of each of the 4 relais in case of sensor rupture programmable.
- Sensor rupture can be disconnected.

- Self-diagnosis :

- Permanently watches any drifts that may occur on the components. Serves to warn the user before they provoque false measures.
- State of each of the 4 relays in case of self-diagnosis error programmable
- Return value programmable on the analog output in case of selfdiagnosis error.

- Input scale overstepping

Visualised on the display by a flashing measure

Linearisations

- Linear input
- Square root extraction (current or voltage inputs)
- Special linearisation on 20 points (in X and in Y) (inputs : voltage, current, potentiometer or resistance)
- Scale shifting (slope and offset)

Programmable on all inputs.

Brightness setting

Independent setting of digits and leds/bargraphs programmable : 4 levels, according to the location of the appliance (outdoor, control room...)

- Fast reading on the digital display

- Of the setpoints value.
- Of the input signal electrical value.
- Of min. and Max. values.

- Fast reading on the bargraph

- Of the level of alarm setpoints
- Of the state of the relays.
- Of oversteppings or sensor ruptures.

- Function simulation

- The analog output can be simulated (mode generator).
- The measure can be simulated, in order to validate the
configuration of the analog and relay outputs in the installation (mode simulation).

Access code

An access code adjustable from 000 to 999 serves to prevent unauthorized programming of the indicator and of its setpoints, and to lock access to some functions. The factory code is 000 .

x	x	
	x	
0 to 5	Access to scale shifting	
6 to 9	No access	
0 to 5	Access to measure and output simulations	
6 to 9	No access	
0 to 5	Access to fast entering of alarm setpoints	
6 to 9	No access	

Coding

Input type

DIP-BAR 1: 1 measure channel
DIP-BAR 2 : 2 measure channels

Output options

A : Analog (2 outputs programmable in U or I)
R : 2 relays
R4 : 4 relays

Options combinable simultaneously

A
A/R
A / R4
R4
Type of power supply
2 : High Voltage
3 : Low Voltage

Ordering examples:

For a bargraph indicator with 1 input, 2 analog outputs and 2 relays, in 230 Vac power supply, request reference : DIP-BAR 1 AR 2

For an indicator with 2 inputs, 2 analog outputs and 4 relays, in 230 Vac power supply, request reference : DIP-BAR 2 AR4 2

This instrument is designed for industrial applications. It has to be mounted in an electrical switchbox, or equivalent.

Wiring

INPUTS

PROCESS

(B) C

TEMPERATURE

RESISTANCE AND POTENTIOMETER

cha. 1 cha. 2

POWER SUPPLY

A

Drawing of terminals location (view of case rear face)			
D Output current or voltage			
	s2	A1	A
	S3	A2	power supply
	S4	A3	
	S6		
E Output 2 relays	S7	E2	B
	S_{58}	E3	
	S9 S10	E4	channel 1
	S10	E5	
	S12	E7	
	S13	E8	C
E+F	S14	E9	
	S15		channel 2
Output	S16	E11	
4 relays	S18		

OUTPUTS (options)

CURRENT OR VOLTAGE
2 outputs S 1 and S 2 , not insulated, programmable in voltage or current

(D) $\begin{gathered}0-4-20 \mathrm{~mA} \text { passive } \\ \text { external source } 30 \mathrm{~V} \text { max. }\end{gathered}$

2 OR 4 RELAIS

T: NO
C: Common
R:NC

